Microvascular alterations in diabetic mice correlate with level of hyperglycemia.
نویسندگان
چکیده
Vascular alterations are the most common causes of morbidity and mortality in diabetic patients. Despite the impact of endothelial dysfunction on microcirculatory properties, little is known about the endothelial cell alteration during the development of diabetes and its correlation to the metabolic situation. For that reason we continuously monitored in vivo functional and morphological alterations of the microvasculature in hyperglycemic and hyperinsulinemic transgenic UCP1/DTA mice with brown fat deficiency, using a dorsal skin-fold chamber preparation and fluorescence microscopy. UCP1/DTA mice showed a dramatic decrease in vascular density due to a remarkable reduction of small vessels. Vascular permeability and leukocyte endothelial interactions (LEIs) significantly increased. The extent of vascular alteration correlated with the extent of metabolic dysfunction. Decreased tissue perfusion observed in UCP1/DTA mice might play a role in impaired wound healing observed in diabetes. The increased permeability in subcutaneous tissue may serve as predictor of vascular changes in early stages of diabetes. The increased LEI and serum tumor necrosis factor-alpha levels, which mirror the inflammatory process, support the growing evidence of the inflammatory component of diabetic disease. The results suggest that anti-inflammatory strategies might be able to prevent vascular deterioration in early stages of diabetes. Further investigations are required to evaluate the benefit of such therapeutic strategies.
منابع مشابه
Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane.
Long-term peritoneal dialysis is associated with the development of functional and structural alterations of the peritoneal membrane. Long-term exposure to the high glucose concentrations in conventional peritoneal dialysate has been implicated in the pathogenesis of peritoneal hyperpermeability and neoangiogenesis. Vascular endothelial growth factor (VEGF) is an endothelial-specific growth fac...
متن کاملKnockdown of Glyoxalase 1 Mimics Diabetic Nephropathy in Nondiabetic Mice
Differences in susceptibility to diabetic nephropathy (DN) between mouse strains with identical levels of hyperglycemia correlate with renal levels of oxidative stress, shown previously to play a central role in the pathogenesis of DN. Susceptibility to DN appears to be genetically determined, but the critical genes have not yet been identified. Overexpression of the enzyme glyoxalase 1 (Glo1),...
متن کاملدرمان موشهای دیابتیک نوع 1 با آل- ترانس رتینوئیک اسید از طریق مهار سایتوکاینهای پیش التهابی
Background & Aims: Type 1 diabetes is an autoimmune condition associated with the T-cell–mediated destruction of Pancreatic β cells. Vitamin A (retinol) and its metabolites (such as all-trans retinoic acid (ATRA)) have a variety of biological activities including immunomodulatory action in a number of inflammatory and autoimmune conditions. The purpose of this study was to investigate the e...
متن کاملAngiogenesis in diabetic nephropathy.
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a key role in both physiologic and pathologic events, including wound healing, cancer, and diabetes. Neovascularization has been implicated in the genesis of diverse diabetic complications such as retinopathy, impaired wound healing, neuropathy, and, most recently, diabetic nephropathy. Diabetic nephropathy is...
متن کاملInhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice.
Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of diabetes and more recently in mitochondrial alterations in skeletal muscle of diabetic mice. However, so far the exact sources of ROS in skeletal muscle have remained elusive. Aiming at better understanding the causes of mitochondrial alterations in diabetic muscle, we designed this study to characterize the sites ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 52 2 شماره
صفحات -
تاریخ انتشار 2003